\(\int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx\) [537]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 62 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\csc (c+d x)}{a d}-\frac {\log (\sin (c+d x))}{a d}-\frac {\sin (c+d x)}{a d}+\frac {\sin ^2(c+d x)}{2 a d} \]

[Out]

-csc(d*x+c)/a/d-ln(sin(d*x+c))/a/d-sin(d*x+c)/a/d+1/2*sin(d*x+c)^2/a/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2915, 12, 76} \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\sin ^2(c+d x)}{2 a d}-\frac {\sin (c+d x)}{a d}-\frac {\csc (c+d x)}{a d}-\frac {\log (\sin (c+d x))}{a d} \]

[In]

Int[(Cos[c + d*x]^3*Cot[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

-(Csc[c + d*x]/(a*d)) - Log[Sin[c + d*x]]/(a*d) - Sin[c + d*x]/(a*d) + Sin[c + d*x]^2/(2*a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 76

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] &&  !(ILtQ[n
 + p + 2, 0] && GtQ[n + 2*p, 0])

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {a^2 (a-x)^2 (a+x)}{x^2} \, dx,x,a \sin (c+d x)\right )}{a^5 d} \\ & = \frac {\text {Subst}\left (\int \frac {(a-x)^2 (a+x)}{x^2} \, dx,x,a \sin (c+d x)\right )}{a^3 d} \\ & = \frac {\text {Subst}\left (\int \left (-a+\frac {a^3}{x^2}-\frac {a^2}{x}+x\right ) \, dx,x,a \sin (c+d x)\right )}{a^3 d} \\ & = -\frac {\csc (c+d x)}{a d}-\frac {\log (\sin (c+d x))}{a d}-\frac {\sin (c+d x)}{a d}+\frac {\sin ^2(c+d x)}{2 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.74 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {2 \csc (c+d x)+2 \log (\sin (c+d x))+2 \sin (c+d x)-\sin ^2(c+d x)}{2 a d} \]

[In]

Integrate[(Cos[c + d*x]^3*Cot[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

-1/2*(2*Csc[c + d*x] + 2*Log[Sin[c + d*x]] + 2*Sin[c + d*x] - Sin[c + d*x]^2)/(a*d)

Maple [A] (verified)

Time = 0.26 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.74

method result size
derivativedivides \(\frac {\frac {\left (\sin ^{2}\left (d x +c \right )\right )}{2}-\sin \left (d x +c \right )-\ln \left (\sin \left (d x +c \right )\right )-\frac {1}{\sin \left (d x +c \right )}}{d a}\) \(46\)
default \(\frac {\frac {\left (\sin ^{2}\left (d x +c \right )\right )}{2}-\sin \left (d x +c \right )-\ln \left (\sin \left (d x +c \right )\right )-\frac {1}{\sin \left (d x +c \right )}}{d a}\) \(46\)
parallelrisch \(\frac {4 \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (4 \cos \left (d x +c \right )-4\right ) \cot \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )-\cos \left (2 d x +2 c \right )+1}{4 d a}\) \(88\)
risch \(\frac {i x}{a}-\frac {{\mathrm e}^{2 i \left (d x +c \right )}}{8 a d}+\frac {i {\mathrm e}^{i \left (d x +c \right )}}{2 d a}-\frac {i {\mathrm e}^{-i \left (d x +c \right )}}{2 d a}-\frac {{\mathrm e}^{-2 i \left (d x +c \right )}}{8 a d}+\frac {2 i c}{a d}-\frac {2 i {\mathrm e}^{i \left (d x +c \right )}}{d a \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}-\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d a}\) \(140\)
norman \(\frac {-\frac {1}{2 a d}-\frac {\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d a}-\frac {7 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {7 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {7 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {7 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d a}-\frac {\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}\) \(223\)

[In]

int(cos(d*x+c)^5*csc(d*x+c)^2/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(1/2*sin(d*x+c)^2-sin(d*x+c)-ln(sin(d*x+c))-1/sin(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.05 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {4 \, \cos \left (d x + c\right )^{2} - {\left (2 \, \cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - 4 \, \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right ) - 8}{4 \, a d \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(4*cos(d*x + c)^2 - (2*cos(d*x + c)^2 - 1)*sin(d*x + c) - 4*log(1/2*sin(d*x + c))*sin(d*x + c) - 8)/(a*d*s
in(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**5*csc(d*x+c)**2/(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.84 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right )}{a} - \frac {2 \, \log \left (\sin \left (d x + c\right )\right )}{a} - \frac {2}{a \sin \left (d x + c\right )}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/2*((sin(d*x + c)^2 - 2*sin(d*x + c))/a - 2*log(sin(d*x + c))/a - 2/(a*sin(d*x + c)))/d

Giac [A] (verification not implemented)

none

Time = 0.40 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.05 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {2 \, \log \left ({\left | \sin \left (d x + c\right ) \right |}\right )}{a} - \frac {a \sin \left (d x + c\right )^{2} - 2 \, a \sin \left (d x + c\right )}{a^{2}} - \frac {2 \, {\left (\sin \left (d x + c\right ) - 1\right )}}{a \sin \left (d x + c\right )}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/2*(2*log(abs(sin(d*x + c)))/a - (a*sin(d*x + c)^2 - 2*a*sin(d*x + c))/a^2 - 2*(sin(d*x + c) - 1)/(a*sin(d*x
 + c)))/d

Mupad [B] (verification not implemented)

Time = 9.74 (sec) , antiderivative size = 146, normalized size of antiderivative = 2.35 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{a\,d}-\frac {5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1}{d\,\left (2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a\,d}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a\,d} \]

[In]

int(cos(c + d*x)^5/(sin(c + d*x)^2*(a + a*sin(c + d*x))),x)

[Out]

log(tan(c/2 + (d*x)/2)^2 + 1)/(a*d) - (6*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^3 + 5*tan(c/2 + (d*x)/2)^
4 + 1)/(d*(2*a*tan(c/2 + (d*x)/2) + 4*a*tan(c/2 + (d*x)/2)^3 + 2*a*tan(c/2 + (d*x)/2)^5)) - tan(c/2 + (d*x)/2)
/(2*a*d) - log(tan(c/2 + (d*x)/2))/(a*d)